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A Corresponding-States Principle for the Equation of
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A theoretically based corresponding-states principle is developed for the equa-
tion of state of hard-convex-body fluids. For all the fluids considered. the excess
compressibility factor, reduced by means of a parameter which can be deter-
mined analytically. lies on a single curve whose analytical expression can be
obtained from the cquation of state of the hard-sphere fluid.
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1. INTRODUCTION

As is well-known, the corresponding-states principle establishes that, for
similar substances, the equation of state can be put in the form

pe=HT, V) (1

where subindex r indicates a reduced quantity and f is a common function
for all these substances. Generally the reducing quantities are the critical
constants, so that p.=p/p., T,=T/T., and V_ = V/V.. Although a simple
analytical expression for the function f has not been derived, experimental
evidence has shown that the principle is obeyed by many substances, for
which the plots of reduced thermodynamic quantities lie on a single curve.

However, many other substances deviate markedly from this principle.
Apart from quantum effects in certain substances and the polarity of the
molecules in others, the reason for this deviation is the considerable depar-
ture of many molecules from spherical shape. Thus, several attempts have
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Fig. 1. Scveral of the gecometrical shapes considered. Tridimensional
bodies are obtained from the rotation of these planar figures aroud the
axis denoted by dashed lines. Left: Prolate (top) and oblate (bottom)
spherocylinders. Right: Prolate (top) and oblate {bottom) ellipsoids
of revolution. The parameters characterizing the geometry of the
molecules are 7= L, a for spherocylinders. and k = /b for cllipsoids of
revolution. For hard—Gaussian—overlap molecules the shape is not
well defined. but they behave rather similarly to ellipsoids of revolution
and are characterized also by the aspect ratio .

been made to extend the corresponding-states principle by including one
additional parameter that accounts for the effect of the nonsphericity of the
molecules. Particularly fruitful has been the acentric factor w, defined by

[1.2]
w= —log p,— 1.000 (2)

where p, is the reduced vapor pressure at 7,=0.7. Then the extended
corresponding-states principle is expressed in the form

p.=MT.. V., w) (3)

In this papar. we derive a corresponding-states principle for hard-
convex-body (HCB) fluids (see Fig. 1) in terms ol a theoretically deter-
mined parameter defining the shape of the molecules.

2. THEORETICAL BASIS

The virial thcorem [or a onc-component HCB fluid can be expressed
as [3]
ZH('B___l+%/)(S+4T[R2)O,u\'g;n(0) (4)
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where ZY®=pV/NkT is the compressibility factor: g**(0) is the pair
correlation function at contact, averaged over all orientations of the pair of
molecules | and 2; and ¢" = {(r,,v), with r, the position vector from a
reference point in molecule 1 to another in molecule 2 and v the unit vector
normal to the surface at the contact point. S is the surface of the molecule
and R its mean radius of curvature.

For hard spheres of diameter o, the virial theorem is expressed in the
form

Z" =1+ 3npa'gh3(0) (5)

so that, for a given density p and provided that spheres have volume
rm=(n/6)c" equal to that of the HCB molecules, we can write

ZHCB -1 3 (S+47IR2) o,;l\'gil\'(O)

= - 6
zZ"s— 12¢,,2"5(0) (©)
or, in terms of the shape factor x = RS/3v,,,
ZH('H _ ] ] 4 37IR3 av av 0
T’=_<1+ / _gm( ! (7)
ZHS 1 72 v, ) 2R g"5(0)

We can obtain g "5(0) from the very accurate Carnahan-Starling (CS)
equation [4]

3

PV 44ty
CNKT T (1—y)?

(8)

where 1y = pr,, is the packing fraction for molecules of volume r,,. Then we
have previously shown [5] that the relation

O.ﬂ\' gﬂ\'(o)
2R ¢g"5(0)

=3 (9)

holds for hard-oblate-spherocylinder [luids, for which there are data for
both ¢* and g**(0) [6]. for values of the packing fraction equal to those
of the hard-sphere fluid. Consequently, the ratio

(10)

~
~

AL 4/3nR*
7o s\

v m

must be a constant for a given fluid, since the right-hand side depends only
on the shape of the molecule, not on density.
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The same paper [5] showed that the constancy of the ratio
(ZHC® _1)/(ZHS — 1), with the simulation data being used for Z"“P and
the CS Eq. (8) for Z1S, also holds for other HCB fluids.

On the other hand, for a sphere, 4nR*= RS and ¢*" = ¢ = 2R, and for
HCB with shapes not differing very much from sphericity, that is, for
values of the shape factor « close to 1, we can approximate (4/3) nR*/v,, =

RS/3v, =2, and thus

| 4/3nR?

-—<oz+ /3 )za (11)
2 Um

Although the introduction of the approximation given by Eq. (9) into
Eq. (7) results in a slight overestimation of the right-hand side of Eq. (7},
when the approximation given by Eq. (11) is also introduced, it was shown
[5] that the two approximations largely cancel. Thus, introducing Eq. (11)
into Eq. (10), as a very good approach we can put

ZHB 1+ a(ZP5—1) (12)

This equation formally resembles a number of equations of state
proposed for molecular fluids [7-10]. Introducing the CS equation,
Eq. (8), for Z"S, and rearranging, we obtain

ZHB [ 4y 22

a  (1—y)° (13)

Thus, the excess compressibility factor ZH® — 1, reduced by the shape
factor o, must be a universal function of the packing fraction ). In other
words, we have obtained a corresponding-states principle for HCB fluids
which can be expressed in the form

Z=f(y, o) (14)

where parameter « can be determined from geometry by using standard
formulae [11].

3. RESULTS AND DISCUSSION

In order to test the reliability of the principle, we have plotted the left-
hand side of Eq. (13) as a function of the packing fraction for a variety of
HCB fluids. For ZH“® we took the simulation data for prolate [12-15]
and oblate [6] spherocylinders, prolate and oblate ellipsoids of revolution
[16], and prolate and oblate hard-Gaussian-overlap [17] fluids. The
values of « corresponding to the different shapes considered are listed in
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Table I. Shape Factors « for the HCB Fluids Considered

Prolate spherocylinders

¥y 2 3. 4, 6.
2 1.2 1.5 1.82 247
Oblate spherocylinders
b 2 25 3. 35
% 1.13 1.23 1.35 1.47
Prolate ellipsoids of revolution
K 1.25 2. 3.
1.02 (.18 1.48
Oblate ellipsoids of revolution
K 1/1.25 172 1/3
1.02 1.18 1.48
Prolate hard Gaussian overlap
2. 32
1.18 1.06
Oblate hard Gaussian overlap
K 12 2/3

1.18 1.06

Table I. For hard-Gaussian-overlap fluids, the shapes of the molecules are
not well defined. Therefore, we took the shape factors of hard ellipsoids of
revolution with equal axis ratios, which have rather similar properties, and
molecular volumes from the equality of the second virial coefficients of
both types of molecules [5]. Results are shown in Figs. 2-6, where one can
see that the corresponding-states principle holds very well for all the cases
considered.

As with other corresponding-states principles, the one presented here
is, of course, only approximate, since from Eq. (13) it is clear that the prin-
ciple gives the same functional dependence, on the packing fraction y, of
the excess compressibility factor reduced by «, for different molecules
having the same value of the shape factor. This occurs, in particular, for
prolate and oblate ellipsoids with values of the length-to-breadth ratio
x =x and x = 1/x. respectively, which have the same values of o. Simulation
data [16] show that this is not the case, although the difference is small.
The same occurs for hard-Gaussian-overlap fluids.
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Fig. 2. Reduced excess compressibility factor for hard prolate
spherocylinders as a function of the packing fraction y. Points:
Simulation data from Refs. 12-15. Solid line: Eq. (13).

In summary, the correlation we have developed here allows the
compressibility factor for all convex body fluids, except perhaps for
extreme elongations. to be reduced to a single curve with a simple func-
tional form in terms of the packing fraction . This may be useful for the
prediction of the compressibility factors of other HCB fluids. The
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Fig. 3. As in Fig. 2 for hard oblate spherocylinders. Points: Simula-
tion data from Ref. 6. Solid line: Eq. (13).
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Fig. 4. As in Fig. 2 for hard prolate ellipsoids of revolution. Points:
Simulation data (rom Ref. 16. Solid line: Eq. (13).

correlation might be extended to real fluids with approximately convex
molecules, provided that (1) we obtain an effective molecular volume and,
correspondingly, an effective shape factor, and (2) we include the effect
of attractive forces through, for example. second virial coefficient data
[18.19]
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Fig. 5. As in Fig. 2 for hard oblate ellipsoids of revolution. Points:
Simulation data [rom Ref. 16. Solid line: Eq. (13).
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Fig. 6. As in Fig. 2 for prolate and oblate hard-Gaussian-overlap
fluids. Points: Simulation data from Ref. 17. Solid line: Eq. (13).
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