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A theoretically based corresponding-states principle is developed for the equa- 
tion of state of hard-convex-body fluids. For all the fluids considered, the excess 
compressibility htctor, reduced by means of a parameter which can be deter- 
mined analytically, lies on a single curve whose analytical expression can be 
obtained from the equation of state of the hard-sphere fluid. 
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1. I N T R O D U C T I O N  

As is wel l-known,  the cor responding-s ta tes  principle establ ishes that ,  for 
s imilar  substances,  the equa t ion  of state can be put  in the form 

P r ~- . f (  T r ,  V r  ) ( 1 ) 

where subindex r indicates a reduced quan t i ty  and f is a c o m m o n  function 
for all these substances.  Genera l ly  the reducing quant i t ies  are the crit ical 
constants ,  so that  p ,  = p / p . ,  T,  = T / T . ,  and V r = V/V~. Al though  a s imple 
analyt ica l  expression for tile function f has not  been derived,  exper imenta l  
evidence has shown that  the principle is obeyed  by many  substances,  for 
which the plots of reduced t h e r m o d y n a m i c  quant i t ies  lie on a single curve. 

However ,  many  o ther  substances  deviate  marked ly  from this principle.  
Apar t  from quan tum effects in cer tain substances  and the po la r i ty  of the 
molecules in others,  the reason for this devia t ion  is the cons iderab le  depar -  
ture of many  molecules from spherical  shape. Thus,  several a t t empts  have 
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Fig. I. Several of the geometrical shapes considered. Tridimensional 
bodies arc obtained from the rotation of these planar figures aroud the 
axis denoted by dashed lines. Left: Prohue I top) and oblate I bottoml 
spherocylinders. Right: Prolate [top) and oblate (bottom) ellipsoids 
of revolution. The parameters characterizing the geometry of the 
molecules arc 7= L,a for spherocylindcrs, and h-= a,'h for cllipsoids of 
revolution. For hard--Gaussian--overlap molecules the shape is not 
v,'ell defined, but thcy behave rathcr similarly to ellipsoids of revolution 
and are characterized also by the aspect ratio h. 

been m a d e  to extend the co r r e spond ing - s t a t e s  pr inciple  by i nc lud ing  one  
add i t i ona l  p a r a m e t e r  that  accoun t s  for the effect of  the nonsphe r i c i t y  of the 
molecules.  Par t i cu la r ly  fruitful has been the acent r ic  factor co, defined by 
[ 1 . 2 ]  

co = - log Pr -- 1.000 (2) 

where  Pr is tile reduced vapor  pressure  at T r = 0 . 7 .  T h e n  the ex tended  
co r r e spond ing - s t a t e s  pr inciple  is expressed in the form 

p , . = f ( T r .  I"r, ~o) (3) 

In this papar ,  we der ive a co r r e spond ing - s t a t e s  pr inciple  for ha rd-  
c o n v e x - b o d y  ( H C B )  fluids (see Fig. I) in te rms of a theore t ica l ly  deter-  
m ined  p a r a m e t e r  def in ing the shape  of the molecules .  

2. T H E O R E T I C A L  BASIS 

The  virial  t heorem for a o n e - c o m p o n e n t  H C B  fluid can  be expressed 
as [3 ]  

ZnCX~ = I + ~ p ( S +  4 n R  2) a " ' g " ' ( 0 )  (4) 



Hard-Convex-Body Fluids 935 

where ZHCm~=pl//NkT is the compressibility factor: g""(0) is the pair 
correlation function at contact, averaged over all orientations of the pair of 
molecules 1 and 2: and a " ' =  ( r , , v ) ,  with rj2 the position vector from a 
reference point in molecule 1 to another in molecule 2 and v the unit vector 
normal to the surface at the contact point. S is the surface of the molecule 
and R its mean radius of curvature. 

For hard spheres of diameter a, the virial theorem is expressed in the 
form 

Z Hs = 1 + .-]rtpo'Sg Hs(0) (5) 

SO that, for a given density p and provided that spheres have volume 
rm = (7t/6)~ 3 equal to that of the HCB molecules, we can write 

Z He" - 1 (S + 47tR -~ ) a""g""(0) 
Z H s - 1  - 12vmgnS(0) (6) 

or. in terms of the shape factor :~ = RS/3v,,, 

zHCn-- 1 1 ( + 4 / 3 7 t R 3 ~ t r " " g " " ( O )  
Z H s - I  - 2  ~ v,,, / 2 R g H S ( 0 )  I7) 

We can obtain gHS(0) from the very accurate Carnahan-Starling (CS) 
equation I-4] 

p V  1 + 1 ' + ) ' 2 - y 3  

Z=NkT- [1 _y)3  (8) 

where y =  pyre is the packing fraction for molecules of volume Vm. Then we 
have previously shown [5] that the relation 

~"" g""(0) 
2R gHS(0) - -  ~ 1 (9)  

holds for hard-oblate-spherocylinder fluids, for which there are data for 
both a" '  and g""(0) [6],  for values of the packing fraction equal to those 
of the hard-sphere fluid. Consequently, the ratio 

zHC~-- I  I (  4/3~R 3"] 
z H S - - I  ~ 2  ~+ v., / (10) 

must be a constant for a given fluid, since the right-hand side depends only 
on the shape of the molecule, not on density. 



936 Maeso and Solana 

The same paper [5]  showed that the constancy of the ratio 
(Z r4cB - 1 )/(Z Hs - 1 ), with the simulation data being used for Z HcB and 
the CS Eq. (8) for Z Hs, also holds for other HCB fluids. 

On the other hand, for a sphere, 4nR 3 = RS and a"" = a = 2R, and for 
HCB with shapes not differing very much from sphericity, that is, for 
values of the shape factor ~ close to 1, we can approximate (4/3) rtR3/vm "~ 
RS/3Vm = ~, and thus 

I (  4/3rtR 3") 
5 ~+  ~ (11) 
- Vm / 

Although the introduction of the approximation given by Eq. (9) into 
Eq. (7) results in a slight overestimation of the right-hand side of Eq. (7), 
when the approximation given by Eq. ( 11 ) is also introduced, it was shown 
[5] that the two approximations largely cancel. Thus, introducing Eq. (11) 
into Eq. (10), as a very good approach we can put 

Z HcB~ 1 + ~ ( Z  H s -  1) (12) 

This equation formally resembles a number of equations of state 
proposed for molecular fluids [7-10].  Introducing the CS equation, 
Eq. (8), for Z Hs, and rearranging, we obtain 

zHCS-- I  4y - -2y  2 

(1 _:,)3 (13) 

Thus, the excess compressibility factor Z HcD- 1, reduced by the shape 
factor ~, must be a universal function of the packing fraction y. In other 
words, we have obtained a corresponding-states principle for HCB fluids 
which can be expressed in the form 

Z = f ( y ,  ~) (14) 

where parameter ~ can be determined from geometry by using standard 
formulae [ 11 ]. 

3. RESULTS AND DISCUSSION 

In order to test the reliability of the principle, we have plotted the left- 
hand side of Eq. (13) as a function of the packing fraction for a variety of 
HCB fluids. For Z Hc~ we took the simulation data for prolate 1-12-15] 
and oblate [6]  spherocylinders, prolate and oblate ellipsoids of revolution 
[-16], and prolate and oblate hard-Gaussian-overlap [-17] fluids. The 
values of ~ corresponding to the different shapes considered are listed in 
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Table I. Shape Factors  ~t for the HCB Fluids Considered 

Prolate spherocylinders 

~, 2. 3. 4. 6. 
1.2 1.5 1.82 2.47 

Oblate spherocylinders 

? 2. 2.5 3. 3.5 
,_t 1.13 1.23 1.35 1.47 

Prolate ellipsoids of revolution 

h 125 2. 3. 
~t 1.02 I. 18 1.48 

Oblate ellipsoids of revolution 

h 1/1.25 1/2 1/3 
1.02 1.18 1.48 

Prolate hard Gaussian overlap 

h" 2. 3/2 
a 1.18 1.06 

Oblate hard Gaussian overlap 

I," 1/2 2/3 
~t 1.18 1.06 

937 

Table I. For hard-Gaussian-overlap fluids, the shapes of the molecules are 
not well defined. Therefore, we took the shape factors of hard ellipsoids of 
revolution with equal axis ratios, which have rather similar properties, and 
molecular vo lumesf rom the equality of the second virial coefficients of 
both types of molecules [5].  Results are shown in Figs. 2-6, where one can 
see that the corresponding-states principle holds very well for all the cases 
considered. 

As with other corresponding-states principles, the one presented here 
is, of course, only approximate, since from Eq. (13) it is clear that the prin- 
ciple gives the same functional dependence, on the packing fraction y, of 
the excess compressibility factor reduced by ~, for different molecules 
having the same value of the shape factor. This occurs, in particular, for 
prolate and oblate ellipsoids with values of the length-to-breadth ratio 

= x and ~ = I/x. respectively, which have the same values of c~. Simulation 
data [16] show that this is not the case, although the difference is small. 
The same occurs for hard-Gaussian-overlap fluids. 
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Fig. 2. Reduced excess compressibility filctor for hard prolate 
spherocylindcrs as a function of the packing fraction y. Points: 
Simulation data from Refs. 12-15. Solid line: Eq. (13). 

In summary,  the correlation we have developed here allows the 
compressibility factor for all convex body fluids, except perhaps for 
extreme elongations,  to be reduced to a single curve with a simple func- 
tional form in terms of the packing fraction )'. This may be useful for the 
prediction of the compressibili ty factors of other HCB fluids. The 
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As in Fig. 2 for hard oblate spherocylinders. Points: Simula- 
tion data from Ref. 6. Solid line: Eq. (13). 
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Fig. 4. As in Fig. 2 for hard prolate ellipsoids of revolution. Points: 
Simulation data from Ref. 16. Solid line: Eq. (13), 

correlation might be extended to real fluids with approximately convex 
molecules, provided that ( I ) we obtain an effective molecular volume and, 
correspondingly, an effective shape factor, and (2) we include the effect 
of attractive forces through, for example, second virial coefficient data 
[18, 193 
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Fig. 5. As in Fig. 2 for hard oblate ellipsoids of revolution. Points: 
Simulation data from Ref. 16. Solid line: Eq. (13). 
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Fig. 6. As in Fig. 2 for prolate and oblate hard-Gaussian-overlap 
fluids. Points: Simulation data from Ref. 17. Solid line: Eq. (13). 
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